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On Faraday resonance of a viscous liquid
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The tri-diagonal determinant for Faraday resonance of a viscous liquid subject to
an externally imposed vertical oscillation is expressed in terms of the surface-wave
impedance of the liquid and developed as a continued fraction to obtain a systematic
sequence of analytical approximations for the threshold acceleration. The impedance
is calculated for either a clean or a fully contaminated surface on the assumption
that the capillary, gravitational and viscous length scales are small compared with
the breadth and depth of the liquid. Limiting approximations for weak and strong
viscosity are constructed.

1. Introduction
I present here a compact formulation of the Faraday-resonance problem (sub-

harmonic free-surface oscillations for a viscous liquid in a container subjected to a
vertical oscillation)† in terms of the surface-wave impedance

Z(s) = P (s)/N(s), (1.1)

where

N(s) =Lηk(t) ≡
∫ ∞

0

e−stηk(t) dt (1.2)

and P (s) are the Laplace transforms of the free-surface displacement ηk(t) and the
corresponding, externally imposed specific surface pressure pk(t) after factoring out
the horizontal spatial dependence of wavenumber k. This formulation concentrates
the fluid-mechanical part of the problem in the impedance Z (see § 3) and invites
comparison with Guillemin’s (1957) analysis of ladder networks, which leads to the
development of the eigenvalue problem as a continued-fraction sequence indepen-
dently of the structure of Z . It is significantly more economical than the conventional
formulation (e.g. Kumar 1996) that starts from the Navier–Stokes equations.

The externally imposed component of the specific surface pressure for a fluid in a
container subject to the acceleration a = A cos 2ωt is, from d’Alembert’s principle,

pk(t) = −aηk = −Aηk cos 2ωt. (1.3)

The Laplace-transformation of (1.3) is

P (s) = −AL{ηk(t) cos 2ωt} = − 1
2
A[N(s+ 2iω) +N(s− 2iω)], (1.4)

† There is an extensive literature (see Miles & Henderson 1990 for a review) on Faraday resonance
of a weakly viscous fluid, in which sensible viscous action is confined to thin boundary layers, but
explicit results absent this approximation have appeared only recently (Kumar & Tuckerman 1994;
Bechhoefer et al. 1995; Kumar 1996).
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the substitution of which into (1.1) yields

Z(s)N(s) + 1
2
A[N(s+ 2iω) +N(s− 2iω)] = 0. (1.5)

Subharmonic Faraday resonance occurs for those values of A, k and ω for which
η admits a Fourier expansion with the frequencies ωn ≡ nω, n = 1, 3, . . . , and (1.5)
admits the corresponding conjugate-imaginary zeros s = ±inω:

ZnNn + 1
2
A(Nn+2 +Nn−2) = 0 (n = ±1,±3, . . .), (1.6)

where the alternative signs are vertically ordered and the subscript n implies s = inω.
The existence of a non-trivial solution of the homogeneous equations (1.6) implies
(δmn is the Kronecker delta)

det [δmnZ(inω) + 1
2
A(δm+2, n + δm−2, n)] = 0 (m, n = ±1,±3, . . .) (1.7)

for the determination of the threshold acceleration for Faraday resonance.
The implicit hypothesis that the minimum acceleration for instability of the flat

surface occurs for subharmonic (rather than harmonic) motion may fail for shallow
liquids; see Kumar’s (1996) figure 3. However, the appellation ‘Faraday’ presumably
is appropriate only for subharmonic waves.

2. The eigenvalue problem
It is expedient, for the calculation of the zeros of (1.7), to introduce the dimensionless

quantities

Zn ≡ (k/ω2)Z(inω), ε ≡ 1
2
Ak/ω2, (2.1a, b)

and transform the tri-diagonal determinant (1.7) to

∆ ≡ det [δmnZn + ε(δm+2, n + δm−2, n)] = 0. (2.2)

The eigenvalues of (2.2) may be obtained through standard numerical procedures
(Kumar & Tuckerman 1994). Systematic analytical approximations to the dominant
eigenvalue may be obtained through the successive truncations

∆1 = |Z1|2 − ε2, ∆3 = |Z1Z3 − ε2|2 − ε2|Z3|2, (2.3a, b)

∆5 = |Z1(Z3Z5 − ε2)− ε2Z5|2 − ε2|Z3Z5 − ε2|2, . . . . (2.3c)

Dividing these truncations by 1, |Z3|2, |Z3Z5 − ε2|2, . . . , we obtain the continued-
fraction sequence (cf. Wall 1948, Ch. XII; Guillemin 1957, § 4.2; Chen & Vinals
1997)

ε = |Z1|, |Z1 − ε2Z−1
3 |, |Z1 − ε2(Z3 − ε2Z−1

5 )−1 . . . |, (2.4a–c)

which may be solved by iteration to obtain the sequence

ε = |Z1|, |Z1(1−Z13)|,
∣∣∣∣Z1

[
1− Z13|1−Z13|2

1−Z13(Z1/Z5)

]∣∣∣∣ , (2.5a–c)

wherein Z13 ≡ Z−1/Z3. The approximation obtained by solving ∆3 = 0 as a
quadratic in ε2 is equivalent to Kumar’s (1996) equation (3.27); it is algebraically
more complicated, but no more accurate, than (2.5b).
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3. Surface-wave impedance

Lamb (1932, § 349) considers straight-crested waves of wavenumber k on a deep
viscous liquid of kinematic viscosity ν and kinematic surface tension T ′ and obtains
the dispersion function

D(s) ≡ kZ(s) = s2 + 2αs+ σ2 + τ, (3.1)

where

α ≡ 2νk2, σ2 ≡ gk + T ′k3, τ ≡ α2{1− [1 + 2(s/α)]1/2} (3.2a–c)

(D = kZ is more convenient than Z for the description of dispersion, but Z is more
directly related to the dynamics). Although derived for two-dimensional motion, (3.1)
is isotropic and holds for any exp (ik · x) element of a spectral superposition over
k. The components s2/k, 2νks, g + T ′k2 and τ/k of the impedance Z represent,
respectively, the inertial force associated with the surface wave, the Stokes damping
associated with the irrotational component of the flow, the gravitational and capillary
restoring forces, and the force (which comprises negative damping) associated with
the rotational flow.

D(s) admits two zeros in an s-plane cut along (−∞,−νk2). If 0<α/σ < 2.61 these
zeros are complex conjugates with negative real parts and represent damped capillary–
gravity waves. If α/σ > 2.61, they are negative real with −s <> 0.70σ and represent
creep/diffusion (cf. Miles 1968, figure 1).

D(s) for finite depth follows from Basset (1888) or Wehausen & Laitone (1960,
p. 643). D(s) for a fully contaminated surface, for which the surface condition of
vanishing shear stress is replaced by a no-slip condition, is given by (3.1) with (3.2c)
replaced by

τ = 1
2
αs{[1 + 2(s/α)]1/2 − 1}. (3.3)

Substituting Z from (3.1) into (2.1a) and introducing the capillary, gravitational
and viscous length scales,

`c ≡ (T ′/g)1/2, `g ≡ g/ω2, `ν ≡ (2ν/ω)1/2, (3.4a–c)

we obtain

Zn = −n2 + 2iδn+ k`g(1 + k2`2
c) + δ2(1− r+

n − ir−n ), (3.5)

where

δ ≡ 2νk2

ω
= k2`2

ν , r±n (δ) ≡
[(

1

4
+
n2

δ2

)1/2

± 1

2

]1/2

, (3.6a, b)

and Z−n is the complex conjugate of Zn. (Note that δn< ImZn < 2δn.)

Consider, for example, the results presented in figure 6 of Bechhoefer et al. (1995)
for paraffin oil (which provides a clean surface in the present context) at 22 ◦C, for
which ρ = 0.868, g = 981, T ′ = 33.0 and ν = 1.28, all in c.g.s. units. The present
approximations to the threshold acceleration, (2.5a–c), and the corresponding values
of k`c are compared in table 1. The maximum truncation error in the first/second ap-
proximation is 0.4/0.07%. (The larger errors in k`c are a consequence of dA/dk`c = 0
at the threshold.)
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ω/π (Hz) k`c a/g

(a) (b) (c) (a) (b) (c)

20 0.547 0.531 0.531 1.527 1.521 1.521
25 0.716 0.684 0.685 2.391 2.384 2.384
30 0.869 0.818 0.819 3.373 3.369 3.370
35 1.007 0.937 0.938 4.463 4.465 4.466
40 1.133 1.045 1.046 5.653 5.661 5.663
45 1.249 1.142 1.144 6.936 6.952 6.954
50 1.357 1.232 1.234 8.308 8.330 8.334
55 1.457 1.315 1.318 9.765 9.793 9.797
60 1.552 1.393 1.396 11.303 11.335 11.340
65 1.642 1.467 1.470 12.919 12.953 12.960
70 1.728 1.536 1.540 14.609 14.645 14.653
75 1.809 1.602 1.607 16.372 16.406 16.417

Table 1. Threshold wavenumber and acceleration for Bechhoefer et al.’s (1995) oil of density
0.870 g cm−3, surface tension 28.8 dyne cm−1, and kinematic viscosity 1.34 cm2 s−1. The three columns
(a, b, c) for each of k`c and a1/g are calculated from the successive approximations (2.5a–c). The
damping parameter δ increases monotonically from 0.36 to 0.87 as ω/π increases from 20 to 75.

4. Limiting approximations
Having established that truncation at n= 1 typically yields a good approximation to

the threshold acceleration, we construct approximations for weak (δ� 1) and strong
(δ� 1) viscosity.

Letting α/s→ 0 in (3.1), we obtain (Wehausen & Laitone 1960, § 25)

D(s) = s2 + 2αs+ σ2 + O(α3/2s1/2) (α/s→ 0). (4.1)

The corresponding approximation to (3.5) is

Zn = −n2 + 2iδn+ k`g(1 + k2`2
c), (4.2)

which may be combined with ε (2.1b), δ (3.6a),

k ≡ k`g, γ ≡ (`ν/`g)
2 = 2νω3/g2, λ ≡ (`c/`ν)

2 (4.3a–c)

in (2.4a) to obtain the first approximation

A1/g = 2k−1|Z1| = 2|1− k−1 + γλk2 + 2iγk|. (4.4)

The threshold wavenumber and acceleration are determined within 1 + O(γ2) by
ReZ1 = 0 (cf. resonance of a lightly damped, simple oscillator) and are given by

ks = 1− γλ, A1/g = 4γ(1− γλ), (4.5a, b)

which corresponds to the dashed lines in Bechhoefer et al.’s figure 6.
The counterparts of (4.1)–(4.3) for s/α→ 0 are (Bechhoefer et al.)

D(s) = 3
2
s2 + αs+ σ2 + O(α−1s3) (s/α→ 0), (4.6)

Zn = − 3
2
n2 + iδn+ k`g(1 + k2`2

c), (4.7)

and

A1/g = 2|1− 3
2
k−1 + γλk2 + iγk|. (4.8)
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The threshold wavenumber and acceleration determined by ∂A1/∂k = 0 on the
hypothesis that k = O(γ−1/2) admit the asymptotic approximations

ks = ( 2
3
γ)−1/2 + ( 3

2
λ− 1)γ−1 + O(γ−3/2) (4.9a)

and

A1/g = 2(3γ)1/2 − 23/2( 3
2
λ+ 1) + O(γ−1/2), (4.9b)

but these are useful only for rather large γ (for the largest frequency in table 1,
ω = 75π, γ = 36.4 and λ = 2.98).

I am indebted to Professor Bechhoefer for his numerical data and helpful comments.
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